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Abstract—Bis- as well as tris-tetrahydropyranone ring systems were obtained via multiple tandem cyclization–1,3-dipolar cycload-
dition reactions of a-diazo ketones with ketone as well as aldehyde functional groups in a chemoselective manner.
� 2004 Elsevier Ltd. All rights reserved.
The tandem cyclization–1,3-dipolar cycloaddition meth-
odologies involving a-diazo carbonyl compounds1 have
been shown to be important tools for constructing many
bonds with high degrees of regio- and stereocontrol. The
1,3-dipolar cycloaddition reactions of carbonyl ylides
generated from a-diazo carbonyl compounds offer a ver-
satile route for the construction of a variety of complex
molecules2 and natural products.3 As a result, this tech-
nique continues to be the subject of considerable interest
and intensive investigation in synthetic organic chemis-
try. Intramolecular carbenoid–carbonyl group cycliza-
tions have been represented as one of the most
effective methods for generating carbonyl ylides from
a-diazo ketones, their successive cycloaddition reactions
with C@C bonds have been documented2 but not much
studied in the presence of hetero-dipolarophiles. A sur-
vey of the literature revealed that only a few reports
are available on the reactions of carbonyl ylides with
carbonyl groups as hetero-dipolarophiles. It is worth
mentioning that brevicomins4 and zaragozic acid A5

have been inventively approached via tandem cycliza-
tion–cycloaddition methodology in the presence of alde-
hydes such as propionaldehyde and methyl glyoxalate,
respectively. However, the chemistry and selectivity ob-
served in these reactions have not been investigated in
detail. Further, control of the stereoselectivity in the cy-
cloaddition of carbonyl ylides presents a challenge with
the prospect of applications in the synthesis of natural
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products. Reactions of five- or six-membered-ring car-
bonyl ylides with o-quinones,6 p-benzoquinones7 and
other carbonyl compounds8 have also been studied to
afford 1:1, 2:1 or 3:1 cycloadducts without any selectiv-
ity in the presence of copper or rhodium catalysts. Fur-
thermore, the epoxy-bridged tetrahydropyran skeleton
is present in a wide range of natural products and exists
as a part of polycyclic frameworks, for example, louka-
cinols,9 xanthane epoxide,10 and isogosterones.11 In con-
tinuation of our interest in the synthetic utility of a-
diazo carbonyl compounds for the synthesis of highly
substituted epoxy-bridged poly- or spirocyclic frame-
works,12 we report herein the multiple tandem cycliza-
tion–cycloaddition reactions of rhodium(II)-carbenoids
with ketone as well as aldehyde functional groups in a
chemoselective manner.

It was envisaged that the reaction of a-diazo ketones
such as 1 or 2 with Rh2(OAc)4 would generate the cor-
responding metallo-carbenoids, based on our earlier
work.7a The respective transient five-membered cyclic
carbonyl ylides 3 or 4 could successfully be generated
in the presence of rhodium(II) acetate as a catalyst
(Fig. 1). To investigate the multiple tandem cycliza-
tion–cycloaddition reactions of these cyclic carbonyl
ylides 3 or 4 with carbonyl groups as heterodipolaro-
philes, the required starting materials of type 1 or 2 were
prepared7a (Table 1).

To explore the reaction of cyclic carbonyl ylides 3 and 4
with substrates having several carbonyl groups, we ini-
tially planned to study the reaction of alicyclic diazo
diketones 1. Towards this, an excess of diazo ketone
1c was added to a dichloromethane solution containing

mailto:smuthus@yahoo.com


O

CH3
O

R4
+ _

( )n

O CR4N2

O
CH3

( )nH3C CR3N2
R2R1

O O

O

CH3

R3O

R1

R2

1 2

+

_

3 4

Figure 1. a-Diazo ketones 1 and 2 and five-membered cyclic carbonyl

ylides 3 and 4.

Table 1.

Entry n R1 R2 R3 R4

1a or 3a –– CH3 CH3 H ––

1b or 3b –– CH3 CH3 COOEt ––

1c or 3c –– –(CH2)2– H ––

2a or 4a 2 –– –– –– H

2b or 4b 2 –– –– –– COOEt

2c or 4c 1 –– –– –– H

Figure 3. ORTEP diagram of compound 5a.

Table 2.

Entry R X Y Z Yield (%)a

5a H CH3 –(CH2)2– 75

5b H CH3 CH3 CH3 70

5c H –(CH2)4– CH3 60

a Yields (unoptimized) refer to isolated and chromatographically pure

compounds.
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anthraquinone and a catalytic amount of Rh2(OAc)4
under an argon atmosphere. The reaction was moni-
tored by TLC and column chromatographic purification
of the crude reaction mixture afforded the interesting
symmetric bis-cycloadduct 5a in 75% yield (Fig. 2).
The formation of the bis-spiro epoxy-bridged tetra-
hydropyranone ring system 5a was confirmed13 based
on the characteristic singlet resonance signal around
4.63ppm for the bridgehead proton (R=H) in the 1H
NMR spectrum. Further, the structure was unequivo-
cally confirmed by single-crystal X-ray analysis14 (Fig.
3). This reaction revealed that the cyclopropyl substi-
tuted carbonyl ylide 3c generated from diazo ketone 1c
undergoes cycloaddition syn-facially in a head-to-tail
fashion with the carbonyl groups in the rigid six-mem-
bered ring system of anthraquinone in a chemospecific
and diastereoselective manner. Similarly, reaction of di-
azo ketone 1a and cyclohexane fused diazo ketone 2a
with anthraquinone afforded the respective symmetric
bis-cycloadducts 5b,c in good yields (Fig. 2, Table 2).
Interestingly, no cycloadduct arising from the carbonyl
group present in the oxa-norboranane ring system was
observed.
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Figure 2. Reaction of carbonyl ylides with anthraquinone.
Next, we aimed to explore the multiple tandem reactions
of diazo ketones 1 and 2 with substrates possessing sev-
eral aldehyde functionalities. Thus, the tandem cycliza-
tion–cycloaddition reaction of a-diazo ketone 1b with
phthalaldehyde in the presence of rhodium(II) acetate
catalyst under reflux afforded13 bis-cycloadduct 6a in
76% yield. The spectral data showed that this product
existed as a bis-dioxabridged compound symmetric in
nature (Fig. 4, Table 3). A similar result was obtained
when diazo ketone 2b was used affording 6b as the prod-
uct. Further, the Rh(II)-catalyzed double 1,3-dipolar cy-
cloaddition reactions of the transient cyclic carbonyl
7 8
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Figure 4. Reaction of carbonyl ylides with various aromatic di- and

tri-aldehydes.
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Figure 6. Possible 2:1 and 3:1 adducts with anthraquinone and a tri-

aldehyde.

Table 3.

Entry R X Y Z Yield (%)a

6a COOEt CH3 CH3 CH3 76

6b COOEt –(CH2)4– CH3 65

7a H CH3 CH3 CH3 82

7b COOEt CH3 CH3 CH3 64

7c H –(CH2)4– CH3 63

7d COOEt –(CH2)4– CH3 58

7e H –(CH2)4– CH3 55

8a H CH3 CH3 CH3 70

8b H –(CH2)4– CH3 65

a Yields (unoptimized) refer to isolated and chromatographically pure

compounds.
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ylides 3 and 4 with terephthalaldehyde afforded13 the
corresponding bis-cycloadducts 7 in a chemoselective
manner. Interestingly, the reaction was extended to
2,4,6-trimethylbenzene-1,3,5-tricarbaldehyde to afford13

the respective tris-cycloadducts 8 in good yields. Based
on earlier work12a and the singlet resonance of the pro-
ton (when R=H), we confirmed the exo-addition of
aldehydes to carbonyl ylide intermediates. The forma-
tion of a single product indicates the complete diastero-
selectivity involved in these multiple tandem cyclization–
cycloaddition reactions similar to our work on aromatic
aldehydes.12a Representatively, the structure and stereo-
chemistry of compound 8a was unequivocally character-
ized by single-crystal X-ray analysis15 (Fig. 5). Several
isomers of products 5–8 are possible in these reactions.
Based on the literature reports,8 isomers 9 and 10 (Fig.
6) are mainly apparent from the reaction of anthraqui-
none and 2,4,6-trimethylbenzene-1,3,5-tricarbaldehyde
with an excess amount of a-diazo ketones, respectively.
Essentially, in all the above reactions, there was no for-
mation of such 2:1 or 3:1 cycloadducts as shown in Fig-
ure 6 observed even in the presence of an excess amount
of diazo ketone. Interestingly, these reactions furnished
the stereochemically favourable cycloadducts 5 and 6–8
with chemospecificity and chemoselectivity, respectively.

In conclusion, the transient five-membered ring carbo-
nyl ylides generated from a-diazo ketones undergo mul-
Figure 5. ORTEP representation of compound 8a.
tiple 1,3-dipolar cycloaddition reactions with
heterodipolarophiles such as ketone or aldehyde func-
tional groups, which are the fundamental building
blocks in synthetic organic chemistry, to afford the bis-
or tris-epoxy-bridged tetrahydropyranone ring systems
in a chemo and diastereoselective manner. In turn, these
multiple tandem cyclization–cycloaddition processes,
from simple starting materials, provide up to nine new
bonds with many stereocentres and with stereoselectivity
in a single synthetic operation. We are in the process of
applying this interesting tandem methodology in the
area of dendrimers.
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(50.3MHz, CDCl3): d 207 (C@O), 139.2 (quat-C), 134.0
(quat-C), 128.6 (CH), 128.2 (CH), 126.6 (CH), 126.0 (CH),
113.3 (quat-C), 89.7 (OCH), 82.0 (quat-C), 40.2 (quat-C),
15.5 (CH3), 15.4 (CH2), 13.3 (CH2); MS (EI) m/z (%): 456
(M+, 2), 333 (5), 248 (7), 124 (100), 67 (22); Anal. Calcd
for C28H24O6:C, 73.67; H, 5.30. Found: C, 73.81; 5.36%.
Compound 6b: colourless solid; mp 175–177�C (chloro-
form/hexane); IR (KBr): 1781, 1755, 1462, 1380, 1306,
1137, 1019, 760cm�1; 1H NMR (200MHz, CDCl3): d 7.54
(dd, J1=7.5Hz, J2=2.0Hz, 2H, arom-H), 7.30 (dd,
J1=7.5Hz, J2=2.0Hz, 2H, arom-H), 5.42 (s, 2H, OCH),
4.20–3.88 (m, 4H, OCH2), 2.30–1.60 (m, 16H), 1.31 (s, 6H,
CH3), 1.01 (t, J=7.0Hz, 6H, CH3);

13C NMR (50.3MHz,
CDCl3); d 206.5 (C@O), 162.8 (COO), 134.6 (quat-C),
129.4 (@CH), 128.4 (@CH), 112.6 (quat-C), 92.9 (quat-C),
74.5 (OCH), 62.7 (OCH2), 52.7 (quat-C), 31.9 (CH2), 27.1
(CH2), 23.4 (CH2), 20.5 (CH2), 16.8 (CH3), 14.3 (CH3);
MS(EI) m/z (%): 582 (M+, 1), 391 (10), 297 (11), 139 (79),
123 (100), 29 (58); Anal. Calcd for C32H38O10: requires C,
65.97; H, 6.57. Found: C, 66.15; H, 6.49%. Compound 7d:
colourless solid; mp 192–194�C (chloroform/hexane); IR
(KBr): 2942, 1778, 1732, 1381, 1329, 1133, 1015, 964cm�1;
1H NMR (200MHz, CDCl3): d 7.27 (s, 4H), 4.86 (s, 2H,
OCH), 4.07–3.87 (m, 4H, OCH2), 2.20–1.30 (m, 16H), 1.19
(s, 6H), 0.99 (t, J=7.0Hz, 6H, CH3);
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(50.3MHz, CDCl3) d 206.5 (C@O) 162.8 (COO), 134.6
(quat-C), 129.4 (CH), 128.4 (CH), 112.6 (quat-C), 92.9
(quat-C), 74.5 (OCH), 62.7 (OCH2), 52.7 (quat-C), 31.9
(CH2), 27.1 (CH2), 23.4 (CH2), 20.5 (CH2), 16.8 (CH3),
14.7 (CH3); MS (FAB) m/z (%): 605 [M+, Na] (20), 487 (5),
391 (7), 247 (45), 225 (100), 149 (40), 123 (70); Anal. Calcd
for C32H38O10:C, 65.97; H, 6.57. Found: C, 65.81; H,
6.64%. Compound 8a: colourless solid; mp 228–230 �C
(chloroform/hexane); IR (KBr): 2930, 1766, 1396, 1136,
997, 850cm�1; 1H NMR (200MHz, CDCl3) d 5.02 (s, 3H,
OCH), 4.44 (s, 3H, OCH), 2.37 (s, 9H CH3), 1.63 (s, 9H,
CH3), 1.08 (s, 9H, CH3), 1.03 (s, 9H, CH3);

13C NMR
(50.3MHz, CDCl3) d 212.9 (C@O), 135.6 (quat-C), 134.5
(quat-C), 115.6 (quat-C), 86.1 (OCH), 77.2 (OCH), 52.4
(quat-C), 21.3 (CH3), 20.2 (CH3), 18.2 (CH3), 15.0 (CH3);
MS (FD+): m/z=582 [M+]. Anal. Calcd for C33H42O9:C,
68.02; H, 7.27. Found: C, 68.16; H, 7.19%.

14. Crystal data for compound 5a: colourless rectangular
crystal. C28H24O6, M=456.47, 0.43·0.12·0.07mm3,
orthorhombic, space group C2221 with a=12.066(8)Å,
b=13.340(9) Å, C=14.094(9)Å, V=2269(3) Å3, T=
293(2)K, R1=0.0436, wR2=0.0949 on observed data, z=
4, Dcalcd=1.336gcm

�3, F(000)=960, Absorption coeffi-
cient=0.094mm�1, k=0.71073Å, 2366 reflections were
collected on a smart apex ccd single crystal CCD
diffractometer, 2151 observed reflections (I P 2r (I)).
The largest difference peak and hole=0.176 and �0.156
eÅ�3, respectively.

15. Crystal data for compound 8a: colourless plates.
C33H42O9, M=582.67, 0.10·0.06·0.04mm3, monoclinic,
space group Cc with a=25.550(8)Å, b=6.2558(19) Å,
C=21.107(6) Å, V=3049.6(16) Å3, T=273(2) K, R1=
0.0978, wR2=0.2569 on observed data, z=4, Dcalcd=1.269
gcm�3, F(000)=1248, Absorption coefficient=
0.092mm�1, k=0.71073Å, 5592 reflections were collected
on a smart apex ccd single crystal CCD diffractometer,
2959 observed reflections (I P 2rI). The largest difference
peak and hole=0.626 and �0.338 eÅ�3, respectively. The
structure was solved by direct methods and refined by full-
matrix least squares on F2 using SHELXL-97SHELXL-97 software.
Crystallographic data for 5a and 8a have been deposited
with the Cambridge Crystallographic Data Centre as
supplementary publication no CCDC-226282 and 237187,
respectively. Copies of the data can be obtained free of
charge on application to 12, Union Road, Cambridge CB2
1EZ, UK, (fax: (+44) 1223-336-033; e-mail: deposit@ccdc.
cam.ac.uk).
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